Survey with Commutants in View
نویسنده
چکیده
The theory of product systems both of Hilbert spaces (Arveson systems) and product systems of Hilbert modules has reached a status where it seems appropriate to rest a moment and to have a look at what is known so far and what are open problems. However, the attempt to give an approximately complete account in view pages is destined to fail already for Arveson systems since Tsirelson, Powers and Liebscher have discovered their powerful methods to construct large classes of examples. In this survey we concentrate on that part of the theory that works also for Hilbert modules. This does not only help to make a selection among the possible topics, but it also helps to shed some new light on the case of Arveson systems. Often, proofs that work for Hilbert modules also lead to simpler proofs in the case of Hilbert spaces. We put emphasis on those aspects that arise from recent results about commutants of von Neumann correspondences, which, in the case of Hilbert spaces, explain the relation between the Arveson system and the Bhat system associated with an E0–semigroup on B(H).
منابع مشابه
Lifting strong commutants of unbounded subnormal operators
Various theorems on lifting strong commutants of unbounded sub-normal (as well as formally subnormal) operators are proved. It is shown that the strong symmetric commutant of a closed symmetric operator S lifts to the strong commutant of some tight selfadjoint extension of S. Strong symmetric commutants of orthogonal sums of subnormal operators are investigated. Examples of (unbounded) irreduci...
متن کاملOn the symmetry of commuting differential operators with singularities along hyperplanes
We study the commutants of a Schrödinger operator, whose potential function has inverse square singularities along some hyperplanes passing through the origin. It is shown that the Weyl group symmetry of the potential function and the commutants naturally comes from such singularities and the genericity condition for the coupling constants.
متن کاملRelative annihilators and relative commutants in non-selfadjoint operator algebras
We extend von Neumann’s Double Commutant Theorem to the setting of nonselfadjoint operator algebras A, while restricting the notion of commutants of a subset S of A to those operators in A which commute with every operator in S. If A is a completely distributive commutative subspace lattice algebra acting on a Hilbert space H, we obtain an alternate characterization (to those of Erdos–Power and...
متن کاملFuss-catalan Algebras and Chains of Intermediate Subfactors
We give a complete description of the generalized FussCatalan algebras: colored generalizations of the TemperleyLieb algebras, introduced by D. Bisch and V. Jones. For these chains of finite dimensional algebras, we describe a basis in terms of generators, and give a complete description, including the dimensions, of the irreducible representations. We then consider an arbitrary subfactor conta...
متن کاملA Dichotomy for the Number of Ultrapowers
We prove a strong dichotomy for the number of ultrapowers of a given model of cardinality ≤ 2א0 associated with nonprincipal ultrafilters on N. They are either all isomorphic, or else there are 2 א0 many nonisomorphic ultrapowers. We prove the analogous result for metric structures, including C*-algebras and II1 factors, as well as their relative commutants and include several applications. We ...
متن کامل